
Towards Precise Vehicle-Free Point Cloud Mapping:
An On-Vehicle System with Deep Vehicle Detection

and Tracking
Mengdan Feng∗, Sixing Hu†, Gim Hee Lee‡ and Marcelo Ang§

∗ Mechanical Engineering
National University of Singapore, Singapore

fengmengdan@u.nus.edu
† Computer Science

National University of Singapore, Singapore
hu.sixing@u.nus.edu
‡ Computer Science

National University of Singapore, Singapore
dcslgh@nus.edu.sg

§ Mechanical Engineering
National University of Singapore, Singapore

mpeangh@nus.edu.sg

Abstract—While 3D LiDAR has become a common practice for
more and more autonomous driving systems, precise 3D mapping
and robust localization is of great importance. However, current
3D map is always noisy and unreliable due to the existence of
moving objects, leading to worse localization. In this paper, we
propose a general vehicle-free point cloud mapping framework
for better on-vehicle localization. For each laser scan, vehicle
points are detected, tracked and then removed. Simultaneously,
3D map is reconstructed by registering each vehicle-free laser
scan to global coordinate based on GPS/INS data.

Instead of direct 3D object detection from point cloud, we
first detect vehicles from RGB images using the proposed YVDN
(YOLOv2 Vehicle Detection Network). In case of false or missing
detection, which may result in the existence of vehicles in the map,
we propose the K-Frames forward-backward object tracking al-
gorithm to link detection from neighborhood images. Laser scan
points falling into the detected bounding boxes are then removed.
We conduct our experiments on the Oxford RobotCar Dataset [1]
and show the qualitative results to validate the feasibility of
our vehicle-free 3D mapping system. Besides, our vehicle-free
mapping system can be generalized to any autonomous driving
system equipped with LiDAR, camera and/or GPS.

Index Terms—Vehicle-free 3D mapping; Point Cloud; object
detection; YOLOv2; Lucas-Kanade tracker

I. INTRODUCTION

Precise 2D/3D map from LiDAR plays an important role
in the localization and navigation of autonomous vehicles.
Nowadays, more and more autonomous driving systems are
equipped with 3D LiDAR due to its higher resolution and
precision. Most existing LiDAR-based localization algorithms
use local features to match with the projected 2D grid map [2],
[3] or global 3D map [4]. Thus, a good map should contain
rich and stable feature points about surrounding environments
without redundancy. However, during data collection for map-
ping, moving objects (refer to objects that are moving or going

Fig. 1. Sample 3D mapping results with/without vehicles from a section of
the route. Left: full 3D Point Cloud map. Blue contours: point cloud trajectory
of the arrow-pointed moving vehicles in the image. Green contours: LiDAR
points from pointed vehicles in the image. Right: vehicle-free 3D map.

to move away within a short time), such as person, vehicles,
bicycles, etc., appear regularly, which causes the existence of
unstable feature points in the map. As a result, localization is
affected due to false laser scan matching.

In this paper, we propose a precise vehicle-free 3D point
cloud mapping framework using deep object detection network
and our proposed object tracking algorithm. Fig. 1 shows an
example of our vehicle-free point cloud map. The main idea
is to detect moving objects from each laser scan and remove
these points. Then point cloud reconstruction can be done
either by registering each clean laser scan data to the global
coordinate using global poses from GPS/INS or transforming
each vehicle-free laser scan to existing point cloud using
relative poses from odometer, such as visual odometry [5] or
wheel encoders. In our experiments, we use global poses from
INS for point cloud registration since the Oxford RobotCar
Dataset contains the GPS/INS data.



3D object detection and tracking remain challenging due to
the irregular shape of 3D point cloud and its computational
complexity. Most deep learning methods for 3D object detec-
tion discretize point cloud to voxel grid [6] or encode point
cloud to 2D maps [7], [8] for feature learning and bounding
box regression. However, compared with 3D object detection,
state-of-the-art 2D object detectors using deep networks are
faster and more accurate [9], [10]. Therefore, we make use of
2D object detectors in our work. We also propose a tracking
method to avoid missing and false detection from one frame.
Motivated by Frustum PointNet [11] which fuses information
from RGB-D images for 3D object detection, we utilize the
information from both the LiDAR and the camera for vehicle-
free 3D mapping.

The main contributions of our work are: 1) We pro-
pose a general framework for precise vehicle-free 3D point
cloud mapping for autonomous driving systems. 2) Based
on YOLOv2 [9], we modify and train our YOLOv2 Vehicle
Detection Network (YVDN) to achieve robust vehicle detec-
tion. 3) We propose the K-Frames forward-backward object
tracking algorithm for missing and false detection. 4) We
provide qualitative results on the Oxford RobotCar Dataset
to validate the feasibility of our vehicle-free 3D mapping
systems.

II. RELATED WORK

Vehicle-free point cloud mapping requires vehicle detection
from point cloud and simultaneously mapping. Tracking is
necessary due to missing or false detection. Over the past few
years, a number of algorithms for object detection and tracking
on RGB images or point clouds have been proposed, especially
with the recent breakthroughs of deep networks.

3D Object Detection from Point Cloud: Earlier work on
3D object detection from point cloud usually includes three
steps: removing ground points, clustering remaining points
and labeling each cluster [12]–[14]. [13] proposes hierarchical
segmentation and classifies each segment using different bag-
of-word classifiers. Rather than segmentation, [14] chooses
sliding window approach on each discretized 3D grid feature
for SVM classification.

With the success of convolutional networks on 3D object
detection, different networks [6], [8], [11], [15], [16] are pro-
posed to achieve better performances on popular benchmarks.
Most existing methods represent point cloud as voxel grid or
project points to images for deep feature extraction. [15] is
an earlier method of 3D volumetric CNN for landing zone
detection. VoxNet [6] extends the binary detection to a general
object detection task. However, direct 3D CNN is memory
consuming and less efficient. MV3D [8] achieves faster and
more accurate object detection through fusion of LiDAR
and images. By projecting LiDAR data to bird’s eye view,
MV3D learns 3D region proposals and fuses ROI features
from LiDAR views and images to jointly predict object class
and 3D location. Considering the lag of MV3D, Frustum
PointNets [11] uses 2D object detectors on RGB images to
generate frustum proposals for 3D bounding boxes regression.

Nevertheless, object detection on RGB images are generally
faster and more accurate than on point cloud. Thus, we detect
objects on images and associate them to LiDAR data to filter
moving objects.

2D Object Detection from RGB Images: There are mainly
two categories on the state-of-the-art 2D object detection meth-
ods: region proposal based detection and grid-based detection.
Region proposal methods select proper proposals and classify
each proposal. The most common region proposal methods are
R-CNN series methods [17]–[19]. R-CNN [17] uses selective
search for region proposals and labels each proposal with SVM
classifier. Fast R-CNN [18] learns the region proposals and
jointly processes all the ROIs to accelerate training. Faster R-
CNN [19] replaces hand-crafted region proposals with region
proposal networks and merges Fast R-CNN for detection,
which achieves state-of-the-art accuracy. On the contrary, grid-
based detectors discretize the input to grids and predict grid
label and object locations, such as YOLO [20], YOLOv2 [9]
and SSD [10]. These methods propose real-time, end-to-end
networks for grid-wise class probabilities and bounding box
positions over the entire image. We use YOLOv2 as our basic
network model due to its efficiency and accuracy.

Object Tracking Object detection methods cannot guaran-
tee that target objects always be detected in continuous frames,
which leads to the existence of moving objects in the final map.
Thus, multiple object tracking (MOT) is of crucial importance
for the generation of vehicle-free clean 3D map and better
localization performance.

Most existing MOT methods can be divided into two
categories, one is detection-based tracking, which first detects
target objects in each frames and link objects in each frame
by tracking, such as [21], [22]. The other is detection-free
tracking which requires manual initialization of objects and
joint prediction of object locations and correspondences, such
as [23]. Some deep learning methods are also proposed [24]–
[26]. In this paper, we adopt the tracking-by-detection method
since we get detection from state-of-the-art objectors and use
our K-Frames forward-backward algorithm for object tracking.

III. APPROACH

Our framework aims to build a vehicle-free point cloud map
for better localization from a sequence of images and LiDAR
frames as well as the pose of each frame. LiDAR frames
are captured by LiDAR sensor mounted on the top of the
vehicle and image sequences are recorded by the on-vehicle
camera. The camera and LiDAR sensor have different capture
frequency. We first introduce the pipeline of our framework
in section III-A. Then in section III-B, III-C and III-D, we
introduce our proposed methods and technical details of our
framework.

A. Framework pipeline

Our framework takes images from the camera, 3D points
from LiDAR sensor and GPS/INS information as input. The
result is the vehicle-free 3D point cloud map. For each
image frame, the nearest LiDAR frame is found to be the



+
+

YOLOv2 vehicle 

detection network

(YVDN)

Lucas-Kanade vehicle 

tracking

Detected and tracked 

vehicles

Project to nearest image 

frame

3D laser scan frameImage frame

Vehicle-free

laser scan

GPS/INS

Point cloud 

registration

Vehicle-free 3D point 

cloud map

Fig. 2. Proposed framework: vehicle detection and tracking are performed first for each laser scan, then vehicle-free 3D point cloud map is reconstructed.

DarkNet-19

3×3 

conv

3×3 

conv

3×3 

conv

1×1 

conv

1×1 

conv

1×1 

conv

1024 512 512 512 512 512 3513

13

Fig. 3. The architecture of YOLOv2 Vehicle Detection Network.

corresponding LiDAR frame. We use our YOLOv2 Vehicle
Detection Network (section III-B) to find the bounding boxes
of vehicles. Then our K-Frames forward-backward bounding
box tracking algorithm (section III-C) is applied to find the
missing bounding boxes. Meanwhile, 3D points from LiDAR
sensor is projected to the image frame through geometric
transformation. The 3D points falling into the bounding boxes
are regarded as vehicle points and are removed from the
LiDAR frame. With the pose information from GPS/INS, all
vehicle-free LiDAR frames are transformed to the first frame
which is appointed as world coordinate system. The details of
transformation is in section III-D. The overall pipeline of our
proposed framework is illustrated in Fig. 2.

B. YOLOv2 Vehicle Detection Network (YVDN)

YOLOv2 [9] is the state-of-art, real time and end-to-end
object detection model. We propose the YOLOv2 vehicle
detection network (YVDN) based on the YOLOv2 network
architecture. The structure of our proposed YVDN is illus-
trated in Fig. 3. YVDN has 24 convolutional layers where
first 18 convolutional layers are pre-trained for classification
while last 6 convolutional layers are subsequently trained for
classification and bounding box detection. The pre-trained
classification network is the same as the Darknet-19 [20]
excluding the last convolutional layer. Before end-to-end train-
ing, the classification network is trained on ImageNet [27] for
classification task. For further feature extraction and fusion,
on top of the 18 convolutional layers, we add three 3 × 3
convolutional layers, each of which is followed by a 1 × 1
convolutional layer. All those convolutional layers have 512
filters except the last layer. The output of the last layer is the
prediction of object positions and the corresponding labels.
Each vector of the final output tensor contains anchor box
information of the corresponding receptive field of the input

image. The set of receptive fields of last layer constitutes the
grid on the input image and each receptive field is a cell of
the grid. For each cell, we predict 5 anchor boxes with seven
parameters, i.e. x, y, w, h, confidence and two class labels,
i.e. vehicle and non-vehicle, per anchor boxes. Thus, the
number of filters of output layer is 5× 7, which is in total 35
filters.

C. K-Frames Forward-Backward Vehicle Tracking

As can be seen from Fig. 6 (2-4th columns), our YVDN
network fails to detect all vehicles on some frames. In case
of missing detection and false detection from YVDN, we pro-
pose the K-Frames forward-backward bounding box tracking
algorithm to track vehicles. Our K-Frames forward-backward
bounding box tracking algorithm is based on Lucas-Kanade
method.

The tracking of two consecutive image frames of our
proposed algorithm has four steps: (1) For the image frame
Ii, we detect the feature points {p1, · · · , pn} within each ROI
(the region within the detected bounding box from YVDN)
using the Features from Accelerated Segment Test (FAST)
algorithm [28]. (2) We track these feature points in subsequent
image frame Ii+1 using pyramid Lucas-Kanade method. The
tracked points {p′1, · · · , p′n} in image Ii+1 have confidence
score to indicate the tracking quality between pj and p′j ,
j = 1, · · · , n. (3) The Random Sample Consensus (RANSAC)
algorithm [29] is applied to find robust geometric transforma-
tion between feature points {p1, · · · , pn} and {p′1, · · · , p′n}
based on the confidence score between each pair of feature
point and tracked point. (4) Each bounding box in image Ii
is tracked to image Ii+1 using the geometric transformation
matrix from step 3.

To apply the tracking algorithm on all image frames, there
are two basic ways, to track the bounding box only from
the immediate neighboring frames or track the bounding box
from all the other frames. However, these two ways have
drawbacks. For tracking from the immediate neighbors, the
vehicle will still fail to be detected if it is not detected on more
than two consecutive frames. For tracking from all the other
frames, there will be overwhelming accumulated error from
false positive detection. Ideally, the bounding boxes which are
not successfully detected in several frames should be tracked



from all the other frames, while a few false detected bounding
boxes should be discarded immediately.

To balance the missing detection and false detection, we
propose a K-Frames forward-backward bounding box tracking
algorithm. For the image frame Ii, we track all the bounding
boxes of Ii forward from the image Ii+1 to the image Ii+K−1.
Reversely, the bounding boxes of Ii are back tracked from
the image Ii−1 to the image Ii−K+1. Thus, each of the K
images contain all the detected and tracked bounding boxes.
To avoid the spread of false detection, we only obtain the
bounding boxes of the image Ii+K from the tracking from Ii+1

to Ii+K−1 without the image Ii. Finally the non-maximum
suppression algorithm is applied to remove bounding boxes
with large overlap. As can be seen from the algorithm, a larger
K will make it track more missing bounding boxes but will
make it bring more false bounding boxes. A smaller K is
the opposite situation. The two basic ways applying tracking
algorithm mentioned above is two extreme cases of our K-
Frames forward-backward bounding box tracking algorithm.
When K = 2, the proposed algorithm becomes tracking the
bounding box only from the immediate neighboring frames.
When K is the number of all frames, it becomes tracking the
bounding box from all the other frames. In our application
scenario, through the experiments, we observe that K = 5
provides best performance to track missing detection and to
avoid false detection.

D. 3D Point Cloud Mapping

To get the vehicle-free laser scan by removing the LiDAR
points according to the image points in the bounding boxes, we
need to know the correspondence between the 3D points and
2D image pixels. To project 3D points to the corresponding
image, the transformation is first from LIDAR coordinate
system to camera coordinate system and then to the image
coordinate system. The whole procedure is pre-determinant
after calibration on the LiDAR sensor and the camera. The
homogeneous coordinate of 3D point from LIDAR sensor is
denoted as PL = (X,Y, Z, 1). The homogeneous coordinate
of 2D point on the image is denoted as p = (x, y, 1). After
the calibration, the intrinsic parameter matrix of the camera
K and the displacement matrices of two sensors RL−>c and
tL−>c are known. The transformation from PL to p is

p = K[RL−>c|tL−>c]PL (1)

The points in different LiDAR frames are in different
coordinate systems. To build a 3D point cloud map of the
entire street, these points need to be transformed into a world
coordinate system. We take the coordinate system of the first
frame of the LiDAR coordinate system as the world coordinate
system. The GPS/INS information is known. Therefore, the
displacement, i.e. RL−>L0

and tL−>L0
, from current LiDAR

coordinate system to world coordinate system are known. The
homogeneous coordinate of 3D point in world coordinate is
denoted as PW . The transformation from PL to PW is

PW = [RL−>L0 |tL−>L0 ]PL. (2)

Fig. 4. We select one of the primary route from Oxford RobotCar Dataset.
Blue: traversal path with good GPS. Red: pool GPS.

IV. EXPERIMENT

In this section, we illustrate our experimental results in three
parts. We first describe the Oxford RobotCar Dataset [1] where
we conduct our experiments. Next we present our vehicle
detection and tracking system and the qualitative results on
Oxford RobotCar Dataset. Finally we demonstrate the vehicle
removal process from each laser scan and the final vehicle-free
point cloud map.

A. Oxford RobotCar Dataset

The Oxford RobotCar Dataset contains a large amount of
images, laser scan and GPS/INS data. These data are collected
along the same route for many times in central Oxford under
different weather and illumination conditions. To test our
vehicle detection and tracking system as well as mapping
algorithm, we pick one path collected in an overcast weather
from 09:53:12 am, June 26, 2014, covering almost the full
10km route. The satellite map and vehicle path are visualized
in Fig. 4. The images we use are collected from the Point Grey
Bumblebee XB3 camera, with image resolution 1280 × 960 ×
3. The 3D laser scans are collected from the SICK LD-MRS
3D LiDAR, with 4 planes only. The route we choose contains
19102 image frames and 5801 laser scans.

B. Vehicle Detection and Tracking

For the training of our YVDN, we use the pre-trained high-
resolution model (448 × 448 input) to initialize the Darknet-
19. Then we train the whole network for vehicle detection
on COCO dataset. Equipped with one NVIDIA TITAN X
GPU, we train the network for 30 epochs with the initial
learning rate 5× 10−3, weight decay 0.0001 and momentum
0.95 using Stochastic Gradient Descent. During inference, the
classification threshold is set as 0.25. Sample results of the
vehicle detection from our YVDN are visualized in Fig.5. As
can be seen, the network is robust to lighting changes, large
overlaps and small objects that are far away.

Once our YVDN predicts the vehicle positions for each
image frame, we use our K-Frames forward-backward tracking
algorithm for vehicle tracking. First, FAST [28] key-point
detector is applied on each bounding box due to its efficiency



Fig. 5. Sample vehicle detection results from our YVDN on Oxford RobotCar
Dataset. Red boxes: detected vehicles. As we can see, the detector is robust
to occlusion and illumination.

and robustness. Second, the key-points are tracked using our
K-Frames forward-backward bounding tracking algorithm. We
choose K = 5. Third, after we get the pair of corresponding
points between different images, we estimate the affine trans-
formation between the matched point pairs using RANSAC
algorithm [29]. Thus, we successfully track the bounding
boxes from previous image to current image. Finally, we
remove bounding boxes if the overlapping ratio is large than
a threshold. We set the ratio threshold 0.7 in our experiment.
Some tracking results can be seen from Fig. 6. The results
show that our tracking algorithm can successfully track the
missing detected bounding boxes.

C. Precise Vehicle-Free 3D Point Cloud Mapping

We filter each laser scan by removing vehicles from the
point cloud before reconstructing the point cloud. For each
laser scan, we first project the 3D points to its nearest image
frame according to the time stamp. Then we remove the points
whose projection to the image falling into the detected and
tracked bounding boxes. Thus, we get vehicle-free laser scan.
Fig. 7 shows two examples of vehicle removal from laser scan.

For vehicle-free 3D point cloud mapping, we first inter-
polate the INS data to get the global pose for each laser
scan according to their time stamps. Next we register each
vehicle-free laser scan to the global coordinate using geometric
transformations. We select around 200-meters path from the
whole route and reconstruct the 3D map with and without
vehicles. Fig. 8 shows the full point cloud model of the scene
before and after vehicle removal. We can see that the vehicles
can be successfully removed from the 3D map. It validates the
feasibility and robustness of our proposed algorithm.

V. CONCLUSION

In this paper, we propose a general on-vehicle system for
precise vehicle-free 3D point cloud mapping using a sequence
of laser scans from a LiDAR sensor and corresponding RGB

images from a camera. The vehicle-free 3D map only contains
points from static background without points from moving
objects, i.e. vehicles in our experiment. It is supposed to
make contribution on more robust and accurate LiDAR-based
vehicle localization. Our proposed YVDN and K-Frames
forward-backward object tracking algorithm is able to detect
vehicles robustly. The results on the Oxford RobotCar Dataset
indicates that our proposed on-vehicle system can remove
points belonging to vehicles and build a precise vehicle-free
3D point cloud map. In our future work, we will continue
working on the LiDAR-based localization using the vehicle-
free 3D point cloud map or converted 2D grid map.

VI. ACKNOWLEDGMENT

This research was supported by the National Research
Foundation (NRF) Singapore through the Singapore-MIT Al-
liance for Research and Technology’s (FM IRG) research
programme. We are grateful for the support.

REFERENCES

[1] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in IEEE International Conference on Robotics and
Automation, May 1999.

[3] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in neural
information processing systems, 2002, pp. 713–720.

[4] J. M. Bedkowski and T. Röhling, “Online 3d lidar monte carlo localiza-
tion with gpu acceleration,” Industrial Robot: An International Journal,
vol. 44, no. 4, pp. 442–456, 2017.

[5] D. Nistr, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 1. Ieee, 2004, pp. I–I.

[6] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2015, pp. 922–928.

[7] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in The IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1, no. 2, 2017, p. 3.

[9] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in IEEE
Conference on Computer Vision and Pattern Recognition, July 2017.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[11] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for
3d object detection from rgb-d data,” arXiv preprint arXiv:1711.08488,
2017.

[12] F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3d lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicles Symposium, 2009 IEEE. IEEE, 2009, pp. 215–220.

[13] J. Behley, V. Steinhage, and A. B. Cremers, “Laser-based segment
classification using a mixture of bag-of-words,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,
2013, pp. 4195–4200.

[14] D. Z. Wang and I. Posner, “Voting for voting in online point cloud object
detection.” in Robotics: Science and Systems, vol. 1, 2015, p. 5.

[15] D. Maturana and S. Scherer, “3d convolutional neural networks for
landing zone detection from lidar,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp. 3471–3478.

[16] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using
fully convolutional network,” in Proceedings of Robotics: Science and
Systems, AnnArbor, Michigan, June 2016.



Fig. 6. Sample vehicle tracking results: each row indicates the tracking results in continuous frames. Blue boxes: detected vehicles. Red boxes: tracked
vehicles. As can be seen, missing detection can be successfully tracked.

(a)

(b)

(c)

Fig. 7. Examples of vehicle removal from each laser scan. Each column
represents an example vehicle removal pipeline. (a) Single laser scan frame;
(b) Laser points projection to image and vehicle detection and tracking on
image; (c) Vehicle points removal for vehicle-free laser scan.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Computer Vision and Pattern Recognition, 2014.

[18] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.
[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[21] J. Shi et al., “Good features to track,” in IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 1994, pp. 593–600.

[22] B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury, “A stochastic

Fig. 8. Sample 3D mapping results with/without vehicles. The left image
shows a full point cloud map. Green and blue boxes represent vehicles in the
corner image. The right image shows the vehicle-free point cloud map.

graph evolution framework for robust multi-target tracking,” in European
Conference on Computer Vision. Springer, 2010, pp. 605–619.

[23] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE transactions on pattern analysis and machine intelligence, vol. 34,
no. 7, pp. 1409–1422, 2012.

[24] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in 2015 IEEE international con-
ference on computer vision (ICCV), no. EPFL-CONF-230283. IEEE,
2015, pp. 4705–4713.

[25] M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, and B. Schiele,
“A multi-cut formulation for joint segmentation and tracking of multiple
objects,” arXiv preprint arXiv:1607.06317, 2016.

[26] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” in The
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[28] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European conference on computer vision. Springer, 2006,
pp. 430–443.

[29] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” in Readings in computer vision. Elsevier, 1987, pp. 726–
740.


